Query individual files#
Here, weโll query individual files and inspect their metadata.
This guide can be skipped if you are only interested in how to leverage the overall dataset.
import lamindb as ln
import lnschema_bionty as lb
import anndata as ad
๐ก loaded instance: testuser1/test-scrna (lamindb 0.56a1)
ln.track()
๐ก notebook imports: anndata==0.9.2 lamindb==0.56a1 lnschema_bionty==0.32.0
๐ก Transform(id=3, uid='agayZTonayqAz8', name='Query individual files', short_name='scrna3', version='0', type=notebook, updated_at=2023-10-16 21:47:54, created_by_id=1)
๐ก Run(id=3, uid='1z1pcGU3opPZ1kawQaj8', run_at=2023-10-16 21:47:54, transform_id=3, created_by_id=1)
Access #
Query files by provenance metadata#
users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).search("scrna")
id | __ratio__ | |
---|---|---|
name | ||
scRNA-seq | 1 | 90.0 |
Append a new batch of data | 2 | 36.0 |
Query individual files | 3 | 36.0 |
transform = ln.Transform.filter(uid="Nv48yAceNSh8z8").one()
ln.File.filter(transform=transform).df()
uid | storage_id | key | suffix | accessor | description | version | size | hash | hash_type | transform_id | run_id | initial_version_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||||
1 | MpmFBPjOegAuuyRzbGAq | 1 | None | .h5ad | AnnData | Conde22 | None | 57615999 | 6Hu1BywwK6bfIU2Dpku2xZ | sha1-fl | 1 | 1 | None | 2023-10-16 21:47:05 | 1 |
Query files based on biological metadata#
assays = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
cell_types = lb.CellType.lookup()
query = ln.File.filter(
experimental_factors=assays.single_cell_rna_sequencing,
species=species.human,
cell_types=cell_types.gamma_delta_t_cell,
)
query.df()
uid | storage_id | key | suffix | accessor | description | version | size | hash | hash_type | transform_id | run_id | initial_version_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||||
1 | MpmFBPjOegAuuyRzbGAq | 1 | None | .h5ad | AnnData | Conde22 | None | 57615999 | 6Hu1BywwK6bfIU2Dpku2xZ | sha1-fl | 1 | 1 | None | 2023-10-16 21:47:05 | 1 |
Transform #
Compare gene sets#
Get file objects:
query = ln.File.filter()
file1, file2 = query.list()
file1.describe()
File(id=1, uid='MpmFBPjOegAuuyRzbGAq', suffix='.h5ad', accessor='AnnData', description='Conde22', size=57615999, hash='6Hu1BywwK6bfIU2Dpku2xZ', hash_type='sha1-fl', updated_at=2023-10-16 21:47:05)
Provenance:
๐๏ธ storage: Storage(id=1, uid='bEvhinvc', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-10-16 21:45:55, created_by_id=1)
๐ transform: Transform(id=1, uid='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type='notebook', updated_at=2023-10-16 21:46:01, created_by_id=1)
๐ฃ run: Run(id=1, uid='Tcf2JasApz9P8RE7gqna', run_at=2023-10-16 21:46:01, transform_id=1, created_by_id=1)
๐ค created_by: User(id=1, uid='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-10-16 21:45:55)
โฌ๏ธ input_of (core.Run): ['2023-10-16 21:47:14']
Features:
var: FeatureSet(id=1, uid='ISCdUu2vePwTzsv99UmG', n=36503, type='number', registry='bionty.Gene', hash='dnRexHCtxtmOU81_EpoJ', updated_at=2023-10-16 21:46:57, modality_id=1, created_by_id=1)
'MIR1302-2HG', 'FAM138A', 'OR4F5', 'None', 'None', 'None', 'None', 'None', 'None', 'None', 'OR4F29', 'None', 'OR4F16', 'None', 'LINC01409', 'FAM87B', 'LINC01128', 'LINC00115', 'FAM41C', 'None', ...
obs: FeatureSet(id=2, uid='AeMRCgTDsUFRNwXFlqD9', n=4, registry='core.Feature', hash='xPTyeKYm-_4RH5MEI97t', updated_at=2023-10-16 21:46:58, modality_id=2, created_by_id=1)
๐ cell_type (32, bionty.CellType): 'classical monocyte', 'T follicular helper cell', 'memory B cell', 'alveolar macrophage', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'effector memory CD8-positive, alpha-beta T cell, terminally differentiated', 'alpha-beta T cell', 'CD4-positive helper T cell', 'naive thymus-derived CD8-positive, alpha-beta T cell', 'macrophage', ...
๐ assay (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
๐ tissue (17, bionty.Tissue): 'blood', 'thoracic lymph node', 'spleen', 'lung', 'mesenteric lymph node', 'lamina propria', 'liver', 'jejunal epithelium', 'omentum', 'bone marrow', ...
๐ donor (12, core.ULabel): 'D496', '621B', 'A29', 'A36', 'A35', '637C', 'A52', 'A37', 'D503', '640C', ...
Labels:
๐ท๏ธ species (1, bionty.Species): 'human'
๐ท๏ธ tissues (17, bionty.Tissue): 'blood', 'thoracic lymph node', 'spleen', 'lung', 'mesenteric lymph node', 'lamina propria', 'liver', 'jejunal epithelium', 'omentum', 'bone marrow', ...
๐ท๏ธ cell_types (32, bionty.CellType): 'classical monocyte', 'T follicular helper cell', 'memory B cell', 'alveolar macrophage', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'effector memory CD8-positive, alpha-beta T cell, terminally differentiated', 'alpha-beta T cell', 'CD4-positive helper T cell', 'naive thymus-derived CD8-positive, alpha-beta T cell', 'macrophage', ...
๐ท๏ธ experimental_factors (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
๐ท๏ธ ulabels (12, core.ULabel): 'D496', '621B', 'A29', 'A36', 'A35', '637C', 'A52', 'A37', 'D503', '640C', ...
file1.view_flow()
file2.describe()
File(id=2, uid='qscOv2TpO4PaevwVlwRs', suffix='.h5ad', accessor='AnnData', description='10x reference adata', size=857752, hash='j6o6e27xPdqHQyT7Em_7MQ', hash_type='md5', updated_at=2023-10-16 21:47:42)
Provenance:
๐๏ธ storage: Storage(id=1, uid='bEvhinvc', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-10-16 21:45:55, created_by_id=1)
๐ transform: Transform(id=2, uid='ManDYgmftZ8Cz8', name='Append a new batch of data', short_name='scrna2', version='0', type='notebook', updated_at=2023-10-16 21:47:14, created_by_id=1)
๐ฃ run: Run(id=2, uid='xkYC1M6aAdWdAwNLWCmV', run_at=2023-10-16 21:47:14, transform_id=2, created_by_id=1)
๐ค created_by: User(id=1, uid='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-10-16 21:45:55)
Features:
var: FeatureSet(id=4, uid='tPDeC1XYr2fGU3UipJot', n=754, type='number', registry='bionty.Gene', hash='WMDxN7253SdzGwmznV5d', updated_at=2023-10-16 21:47:42, modality_id=1, created_by_id=1)
'IL18', 'NPM3', 'S100A9', 'S100A8', 'CNN2', 'ARHGAP45', 'RNF34', 'GPX4', 'S100A6', 'ADISSP', 'S100A4', 'FAM174C', 'SIT1', 'CCDC107', 'RSL1D1', 'TLN1', 'HES4', 'TNFRSF17', 'PCNA', 'RAB13', ...
obs: FeatureSet(id=5, uid='6AEOiT1l8HTdqkAVleqZ', n=1, registry='core.Feature', hash='PFicj8Uq94k6vPsRmJvl', updated_at=2023-10-16 21:47:42, modality_id=2, created_by_id=1)
๐ cell_type (9, bionty.CellType): 'B cell, CD19-positive', 'dendritic cell', 'central memory CD8-positive, alpha-beta T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD8-positive, alpha-beta memory T cell', 'CD16-positive, CD56-dim natural killer cell, human', 'Cd4-negative, CD8_alpha-negative, CD11b-positive dendritic cell', 'monocyte', 'mature T cell'
external: FeatureSet(id=6, uid='unwxLOfuEVBcpuW10Uhu', n=2, registry='core.Feature', hash='m_3u0np1BS5T5HSnawJY', updated_at=2023-10-16 21:47:42, modality_id=2, created_by_id=1)
๐ assay (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
๐ species (1, bionty.Species): 'human'
Labels:
๐ท๏ธ species (1, bionty.Species): 'human'
๐ท๏ธ cell_types (9, bionty.CellType): 'B cell, CD19-positive', 'dendritic cell', 'central memory CD8-positive, alpha-beta T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD8-positive, alpha-beta memory T cell', 'CD16-positive, CD56-dim natural killer cell, human', 'Cd4-negative, CD8_alpha-negative, CD11b-positive dendritic cell', 'monocyte', 'mature T cell'
๐ท๏ธ experimental_factors (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
file2.view_flow()
Load files into memory:
file1_adata = file1.load()
file2_adata = file2.load()
Here we compute shared genes without loading files:
file1_genes = file1.features["var"]
file2_genes = file2.features["var"]
shared_genes = file1_genes & file2_genes
len(shared_genes)
749
shared_genes.list("symbol")[:10]
['HES4',
'TNFRSF4',
'SSU72',
'PARK7',
'RBP7',
'SRM',
'MAD2L2',
'AGTRAP',
'TNFRSF1B',
'EFHD2']
Compare cell types#
file1_celltypes = file1.cell_types.all()
file2_celltypes = file2.cell_types.all()
shared_celltypes = file1_celltypes & file2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['CD8-positive, alpha-beta memory T cell',
'CD16-positive, CD56-dim natural killer cell, human']
We can now subset the two datasets by shared cell types:
file1_adata_subset = file1_adata[
file1_adata.obs["cell_type"].isin(shared_celltypes_names)
]
file2_adata_subset = file2_adata[
file2_adata.obs["cell_type"].isin(shared_celltypes_names)
]
Concatenate subsetted datasets:
adata_concat = ad.concat(
[file1_adata_subset, file2_adata_subset],
label="file",
keys=[file1.description, file2.description],
)
adata_concat
AnnData object with n_obs ร n_vars = 244 ร 749
obs: 'cell_type', 'file'
obsm: 'X_umap'
adata_concat.obs.value_counts()
cell_type file
CD8-positive, alpha-beta memory T cell Conde22 120
CD16-positive, CD56-dim natural killer cell, human Conde22 114
CD8-positive, alpha-beta memory T cell 10x reference adata 7
CD16-positive, CD56-dim natural killer cell, human 10x reference adata 3
dtype: int64