Jupyter Notebook Binder

Project flow#

LaminDB allows tracking data flow on the entire project level.

Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.

A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-γ production.

These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.

More specifically: Why should I care about data flow?

Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.

While tracking data flow is easier when it’s governed by deterministic pipelines, it becomes hard when it’s governed by interactive human-driven analyses.

LaminDB interfaces workflow mangers for the former and embraces the latter.

Setup#

Init a test instance:

!lamin init --storage ./mydata
Hide code cell output
✅ saved: User(id=1, uid='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-10-16 21:44:09)
✅ saved: Storage(id=1, uid='UyhcMpU0', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata', type='local', updated_at=2023-10-16 21:44:09, created_by_id=1)
💡 loaded instance: testuser1/mydata
💡 did not register local instance on hub (if you want, call `lamin register`)

Import lamindb:

import lamindb as ln
from IPython.display import Image, display
💡 loaded instance: testuser1/mydata (lamindb 0.56a1)

Steps#

In the following, we walk through exemplified steps covering different types of transforms (Transform).

Note

The full notebooks are in this repository.

App upload of phenotypic data #

Register data through app upload from wetlab by testuser1:

ln.setup.login("testuser1")
transform = ln.Transform(name="Upload GWS CRISPRa result", type="app")
ln.track(transform)
output_path = ln.dev.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
output_file = ln.File(output_path, description="Raw data of schmidt22 crispra GWS")
output_file.save()
Hide code cell output
💡 Transform(id=1, uid='DEXNeV7iLeChAO', name='Upload GWS CRISPRa result', type='app', updated_at=2023-10-16 21:44:12, created_by_id=1)
💡 Run(id=1, uid='zn2h1jGqwjqd7FUJvVey', run_at=2023-10-16 21:44:12, transform_id=1, created_by_id=1)

Hit identification in notebook #

Access, transform & register data in drylab by testuser2:

ln.setup.login("testuser2")
transform = ln.Transform(name="GWS CRIPSRa analysis", type="notebook")
ln.track(transform)
# access
input_file = ln.File.filter(key="schmidt22-crispra-gws-IFNG.csv").one()
# identify hits
input_df = input_file.load().set_index("id")
output_df = input_df[input_df["pos|fdr"] < 0.01].copy()
# register hits in output file
ln.File(output_df, description="hits from schmidt22 crispra GWS").save()
Hide code cell output
💡 Transform(id=2, uid='iQLObuOrwUEuE4', name='GWS CRIPSRa analysis', type='notebook', updated_at=2023-10-16 21:44:13, created_by_id=1)
💡 Run(id=2, uid='EA7iPD0Gu95MQRvqIZMH', run_at=2023-10-16 21:44:13, transform_id=2, created_by_id=1)

Inspect data flow:

file = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
file.view_flow()
https://d33wubrfki0l68.cloudfront.net/b9591cdd8fc0613901a36837d128756ea6546bf6/14f09/_images/41d9fe2e5fbf26914602a8043f146b50a865a64d8fb5543629834553a96e8164.svg

Sequencer upload #

Upload files from sequencer:

ln.setup.login("testuser1")
ln.track(ln.Transform(name="Chromium 10x upload", type="pipeline"))
# register output files of upload
upload_dir = ln.dev.datasets.dir_scrnaseq_cellranger(
    "perturbseq", basedir=ln.settings.storage, output_only=False
)
ln.File(upload_dir.parent / "fastq/perturbseq_R1_001.fastq.gz").save()
ln.File(upload_dir.parent / "fastq/perturbseq_R2_001.fastq.gz").save()
ln.setup.login("testuser2")
Hide code cell output
💡 Transform(id=3, uid='YNGLznzGI0yYnt', name='Chromium 10x upload', type='pipeline', updated_at=2023-10-16 21:44:14, created_by_id=1)
💡 Run(id=3, uid='euPQlJ5u0Jd7VnpLLkze', run_at=2023-10-16 21:44:14, transform_id=3, created_by_id=1)
❗ file has more than one suffix (path.suffixes), inferring: '.fastq.gz'
❗ file has more than one suffix (path.suffixes), inferring: '.fastq.gz'

scRNA-seq bioinformatics pipeline #

Process uploaded files using a script or workflow manager: Pipelines and obtain 3 output files in a directory filtered_feature_bc_matrix/:

transform = ln.Transform(name="Cell Ranger", version="7.2.0", type="pipeline")
ln.track(transform)
# access uploaded files as inputs for the pipeline
input_files = ln.File.filter(key__startswith="fastq/perturbseq").all()
input_paths = [file.stage() for file in input_files]
# register output files
output_files = ln.File.from_dir("./mydata/perturbseq/filtered_feature_bc_matrix/")
ln.save(output_files)
Hide code cell output
💡 Transform(id=4, uid='q30iZ8PnG2ic3N', name='Cell Ranger', version='7.2.0', type='pipeline', updated_at=2023-10-16 21:44:16, created_by_id=1)
💡 Run(id=4, uid='F23fc0TuKjXIHy2QRDP3', run_at=2023-10-16 21:44:16, transform_id=4, created_by_id=1)
❗ file has more than one suffix (path.suffixes), inferring: '.tsv.gz'
❗ file has more than one suffix (path.suffixes), inferring: '.mtx.gz'
❗ file has more than one suffix (path.suffixes), inferring: '.tsv.gz'

Post-process these 3 files:

transform = ln.Transform(name="Postprocess Cell Ranger", version="2.0", type="pipeline")
ln.track(transform)
input_files = [f.stage() for f in output_files]
output_path = ln.dev.datasets.schmidt22_perturbseq(basedir=ln.settings.storage)
output_file = ln.File(output_path, description="perturbseq counts")
output_file.save()
Hide code cell output
❗ record with similar name exist! did you mean to load it?
id __ratio__
name
Cell Ranger 4 90.0
💡 Transform(id=5, uid='Qt79SLv5zhTUUk', name='Postprocess Cell Ranger', version='2.0', type='pipeline', updated_at=2023-10-16 21:44:16, created_by_id=1)
💡 Run(id=5, uid='gxUBvcfeYmtTgSiDMpBc', run_at=2023-10-16 21:44:16, transform_id=5, created_by_id=1)

Inspect data flow:

output_files[0].view_flow()
https://d33wubrfki0l68.cloudfront.net/62f8604193d65dbd3c3040493267de3b0ea212ef/795c7/_images/53b3cc620fe2f8167383e3bf7b23fc25c9550388e6a4ead168c4e67592e240cf.svg

Integrate scRNA-seq & phenotypic data #

Integrate data in a notebook:

transform = ln.Transform(
    name="Perform single cell analysis, integrate with CRISPRa screen",
    type="notebook",
)
ln.track(transform)

file_ps = ln.File.filter(description__icontains="perturbseq").one()
adata = file_ps.load()
file_hits = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
screen_hits = file_hits.load()

import scanpy as sc

sc.tl.score_genes(adata, adata.var_names.intersection(screen_hits.index).tolist())
filesuffix = "_fig1_score-wgs-hits.png"
sc.pl.umap(adata, color="score", show=False, save=filesuffix)
filepath = f"figures/umap{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
filesuffix = "fig2_score-wgs-hits-per-cluster.png"
sc.pl.matrixplot(
    adata, groupby="cluster_name", var_names=["score"], show=False, save=filesuffix
)
filepath = f"figures/matrixplot_{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
Hide code cell output
💡 Transform(id=6, uid='pBGA1Mnlbb53LP', name='Perform single cell analysis, integrate with CRISPRa screen', type='notebook', updated_at=2023-10-16 21:44:17, created_by_id=1)
💡 Run(id=6, uid='GLwLdWt9XAvpjm5IGF45', run_at=2023-10-16 21:44:17, transform_id=6, created_by_id=1)
WARNING: saving figure to file figures/umap_fig1_score-wgs-hits.png
WARNING: saving figure to file figures/matrixplot_fig2_score-wgs-hits-per-cluster.png

Review results#

Let’s load one of the plots:

ln.track()
file = ln.File.filter(key__contains="figures/matrixplot").one()
file.stage()
Hide code cell output
💡 notebook imports: ipython==8.16.1 lamindb==0.56a1 scanpy==1.9.5
💡 Transform(id=7, uid='1LCd8kco9lZUz8', name='Project flow', short_name='project-flow', version='0', type=notebook, updated_at=2023-10-16 21:44:19, created_by_id=1)
💡 Run(id=7, uid='3xJ7IFZf4Qs2FJb7mg0G', run_at=2023-10-16 21:44:19, transform_id=7, created_by_id=1)
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/figures/matrixplot_fig2_score-wgs-hits-per-cluster.png')
display(Image(filename=file.path))
https://d33wubrfki0l68.cloudfront.net/b3b5eb3f53a7759762d1dca2d67bd76974729731/e5dd6/_images/f096e9d4768812e880e81babbd6eeae4f64efc120154dc379ad9c346ea2ebe9d.png

We see that the image file is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

file.view_flow()
https://d33wubrfki0l68.cloudfront.net/d74b2f567e09842014cbf153604287c29d6584cf/94932/_images/1a484a76035a820cbd14768c6bb7dc058bf82d01af6a1a3326839e37e938ab3f.svg

Alternatively, we can also look at the sequence of transforms:

transform = ln.Transform.search("Bird's eye view", return_queryset=True).first()
transform.parents.df()
uid name short_name version type latest_report_id source_file_id reference reference_type initial_version_id updated_at created_by_id
id
2 iQLObuOrwUEuE4 GWS CRIPSRa analysis None None notebook None None None None None 2023-10-16 21:44:13 1
5 Qt79SLv5zhTUUk Postprocess Cell Ranger None 2.0 pipeline None None None None None 2023-10-16 21:44:16 1
transform.view_parents()
https://d33wubrfki0l68.cloudfront.net/f80d80aec284ec375475ca23f4e9df39238a497c/b7d77/_images/962812682a9f8190eb7f28234bd94479dcf3d1f1df86ff128f85f38098e968a9.svg

Understand runs#

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

File objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating a file:

run = ln.Run(transform=transform)
ln.File(filepath, run=run)
When does a file appear as a run input?

When accessing a file via stage(), load() or backed(), two things happen:

  1. The current run gets added to file.input_of

  2. The transform of that file gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

file.load(is_run_input=True)

Query by provenance#

We can query or search for the notebook that created the file:

transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()

And then find all the files created by that notebook:

ln.File.filter(transform=transform).df()
uid storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
2 08ldlk61O7soMrOzVArw 1 None .parquet DataFrame hits from schmidt22 crispra GWS None 18368 TufBUAIQVzLPDJ4sCV_kTg md5 2 2 None 2023-10-16 21:44:13 1

Which transform ingested a given file?

file = ln.File.filter().first()
file.transform
Transform(id=1, uid='DEXNeV7iLeChAO', name='Upload GWS CRISPRa result', type='app', updated_at=2023-10-16 21:44:12, created_by_id=1)

And which user?

file.created_by
User(id=1, uid='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-10-16 21:44:14)

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser2).df()
uid name short_name version type reference reference_type updated_at latest_report_id source_file_id initial_version_id created_by_id
id

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser2, type="notebook").df()
uid name short_name version type reference reference_type updated_at latest_report_id source_file_id initial_version_id created_by_id
id

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
File
uid storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
10 21r16xFeCtEOqXHaDWTM 1 figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None None None 28814 H0Pxpa-fZOvigo74eXHZsQ md5 6 6 None 2023-10-16 21:44:18 1
9 EqnM7tMOyz8x2EEUsmof 1 figures/umap_fig1_score-wgs-hits.png .png None None None 118999 1-WtAvRL1d_SSjZvMMOMkg md5 6 6 None 2023-10-16 21:44:18 1
8 D2MNFPrl4C7YWg0AxpBF 1 schmidt22_perturbseq.h5ad .h5ad AnnData perturbseq counts None 20659936 la7EvqEUMDlug9-rpw-udA md5 5 5 None 2023-10-16 21:44:17 1
7 KFeNXmzZYJMklKMQrioU 1 perturbseq/filtered_feature_bc_matrix/features... .tsv.gz None None None 6 7fVoqihJL5EzXkGpFwIoug md5 4 4 None 2023-10-16 21:44:16 1
6 ECilDgYspeS6lWz9qdMf 1 perturbseq/filtered_feature_bc_matrix/matrix.m... .mtx.gz None None None 6 lCawN7C-sAC0cRpbwedjAg md5 4 4 None 2023-10-16 21:44:16 1
5 8ioJwJw2ehnqgVatk5Ob 1 perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None None None 6 PuYAqFZyrjjf8uNIxZLMsw md5 4 4 None 2023-10-16 21:44:16 1
4 7XKad3M0cVwU5zdScS2W 1 fastq/perturbseq_R2_001.fastq.gz .fastq.gz None None None 6 6ZOVEOY6ENZY6hc-CA2fDQ md5 3 3 None 2023-10-16 21:44:14 1
Run
uid transform_id run_at created_by_id report_id is_consecutive reference reference_type
id
1 zn2h1jGqwjqd7FUJvVey 1 2023-10-16 21:44:12 1 None None None None
2 EA7iPD0Gu95MQRvqIZMH 2 2023-10-16 21:44:13 1 None None None None
3 euPQlJ5u0Jd7VnpLLkze 3 2023-10-16 21:44:14 1 None None None None
4 F23fc0TuKjXIHy2QRDP3 4 2023-10-16 21:44:16 1 None None None None
5 gxUBvcfeYmtTgSiDMpBc 5 2023-10-16 21:44:16 1 None None None None
6 GLwLdWt9XAvpjm5IGF45 6 2023-10-16 21:44:17 1 None None None None
7 3xJ7IFZf4Qs2FJb7mg0G 7 2023-10-16 21:44:19 1 None None None None
Storage
uid root type region updated_at created_by_id
id
1 UyhcMpU0 /home/runner/work/lamin-usecases/lamin-usecase... local None 2023-10-16 21:44:09 1
Transform
uid name short_name version type latest_report_id source_file_id reference reference_type initial_version_id updated_at created_by_id
id
7 1LCd8kco9lZUz8 Project flow project-flow 0 notebook None None None None None 2023-10-16 21:44:19 1
6 pBGA1Mnlbb53LP Perform single cell analysis, integrate with C... None None notebook None None None None None 2023-10-16 21:44:17 1
5 Qt79SLv5zhTUUk Postprocess Cell Ranger None 2.0 pipeline None None None None None 2023-10-16 21:44:16 1
4 q30iZ8PnG2ic3N Cell Ranger None 7.2.0 pipeline None None None None None 2023-10-16 21:44:16 1
3 YNGLznzGI0yYnt Chromium 10x upload None None pipeline None None None None None 2023-10-16 21:44:14 1
2 iQLObuOrwUEuE4 GWS CRIPSRa analysis None None notebook None None None None None 2023-10-16 21:44:13 1
1 DEXNeV7iLeChAO Upload GWS CRISPRa result None None app None None None None None 2023-10-16 21:44:12 1
User
uid handle email name updated_at
id
2 bKeW4T6E testuser2 testuser2@lamin.ai Test User2 2023-10-16 21:44:16
1 DzTjkKse testuser1 testuser1@lamin.ai Test User1 2023-10-16 21:44:14
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
✅ logged in with email testuser1@lamin.ai (uid: DzTjkKse)
💡 deleting instance testuser1/mydata
✅     deleted instance settings file: /home/runner/.lamin/instance--testuser1--mydata.env
✅     instance cache deleted
✅     deleted '.lndb' sqlite file
❗     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata